Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Comparati...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Comparative Physiology A
Article . 1985 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Drosophila neural pathways

Genetic and electrophysiological analysis
Authors: Gadi Benshalom; Daniel Dagan;

Drosophila neural pathways

Abstract

TheDrosophila giant axon pathways ‘cervical connective — thoracic indirect flight muscles’ were studied by a combined electrophysiological and genetic analysis. A functional coupling of the left and right giant axon pathways was revealed by intracellular recordings of electrical responses of the thoracic indirect flight muscles, when evoked by electrical stimulation of cervical connective (Fig. 2). This functional coupling was demonstrated in wild-type flies and in flies of the single gene, temperature-sensitive paralytic mutation,para ts . The functional coupling was evident also in selected bilateral gynandromorph flies, mosaics for thepara ts mutation (Fig. 1), even at restricted elevated ambient temperature (Tables 1–3). Analysis of neurally evoked electrogenic muscle responses of wild-type flies, following injection of picrotoxin, verifies the notion that both the dorsoventral and the dorsolongitudinal flight muscles share a common activating pathway (Fig. 3). Picrotoxin application to gynandromorph flies demonstrated the existence of neuronal elements additional to the giant axon pathways, that evoke the indirect flight muscles in response to cervical stimulation (Figs. 4, 5). An unexpected finding was the poor correlation between the mosaic external phenotype of the gynandromorph flies ofpara ts mutation and the genotype of neural pathways activating their thoracic flight muscles, as evidenced by the intracellular recordings.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!