
doi: 10.1007/bf00390108
Es sei K ein archimedischer verbandsgeordneter Körper. Verf. zeigt zunächst, daß es einen größten Unterkörper L von K gibt, der total geordnet werden kann, so daß K ein geordneter Vektorraum über L ist. Ist K algebraisch über L, so kann die Verbandsordnung von K zu einer totalen Ordnung erweitert werden. Ist K endlich über L, so ist die additive Gruppe von K als verbandsgeordnete Gruppe direkte Summe total geordneter Gruppen, und Zwischenkörper L(a) mit positivem a sind hinsichtlich der induzierten Ordnung selbst verbandsgeordnet.
archimedean lattice-ordered fields, Ordered rings, algebras, modules, partially ordered vector space, Algebraic field extensions, Ordered fields, structure of the additive l-group, total order, algebraic field extension, archimedean l-fields, Arithmetic theory of polynomial rings over finite fields, Ordered abelian groups, Riesz groups, ordered linear spaces
archimedean lattice-ordered fields, Ordered rings, algebras, modules, partially ordered vector space, Algebraic field extensions, Ordered fields, structure of the additive l-group, total order, algebraic field extension, archimedean l-fields, Arithmetic theory of polynomial rings over finite fields, Ordered abelian groups, Riesz groups, ordered linear spaces
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
