Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao MGG Molecular & Gene...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
MGG Molecular & General Genetics
Article . 1987 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

Regulation of MAL gene expression in yeast: Gene dosage effects

Authors: Goldenthal, M; VANONI, MARCO ERCOLE; Buchferer, B; Marmur, J.;

Regulation of MAL gene expression in yeast: Gene dosage effects

Abstract

Both the MAL1 and MAL6 loci in Saccharomyces strains have been shown by functional and structural studies to comprise a cluster of at least three genes necessary for maltose utilization. They include regulatory, maltose transport and maltase genes designated MALR, MALT and MALS, respectively. Subclones of each gene derived from the MAL6 locus were inserted into the multicopy shuttle plasmid YEp13, introduced into MAL1 and mal1 strains and the effects of altered gene dosage of each gene, or a combination of them, on MAL gene expression investigated. MAL1 strains transformed with a plasmid carrying the MAL6S gene showed coordinate four to five fold increases in both maltase enzyme activity and its mRNA, whereas no increase in maltose transport activity or of MALT mRNA was observed when MAL6T was present on multicopy plasmids. The presence of the MAL6R gene on a multicopy plasmid led to greatly increased transcription of both inducible and constitutive mRNAs with homology to the regulatory gene; it also gave rise to two fold increases in both induced maltase mRNA levels and enzyme activity, but only in the presence of maltose. However, it had no apparent effect on the accumulation of MALT mRNA. Finally, the induction kinetics of plasmid-borne and chromosomal MALS and MALT gene expression were examined under conditions of altered gene dosage of the MAL6 regulatory and structural genes. The results of these experiments indicate that MALR encodes a trans-acting positive activator that requires maltose for induction of MALS and MALT transcription even when the regulatory gene is present on a multicopy plasmid. Maltose transport can be a rate-limiting factor in MAL gene expression, at least in the early stages of induction. The regulation of the MALS and MALT genes, whose activities are coordinately induced in MAL1 strains by maltose, may in fact exhibit some important differences.

Country
Italy
Keywords

Maltase; Maltose fermentation; Maltose permease; Regulatory mutants; Transcriptional regulation;, Genes, Fungal, alpha-Glucosidases, Saccharomyces cerevisiae, Gene Expression Regulation, Genes, Genes; Genes, Fungal; alpha-Glucosidases; Escherichia coli; Gene Expression Regulation; Plasmids; Saccharomyces cerevisiae; Maltose, Escherichia coli, Maltose, Plasmids

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!