<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1007/bf00317163
pmid: 28311887
The impact of climatic warming on the synchrony of insect and plant phenologies was modelled in the case of winter moth (Operophtera brumata) and Sitka spruce (Picea sitchensis) in the Scottish uplands. The emergence of winter moth larvae was predicted with a thermal time requirement model and the budburst of Sitka spruce was predicted from a previously published model (Cannell and Smith 1983) based on winter chilling and thermal time. The date of emergence of winter moth larvae was predicted to occur earlier under climatic warming but the date of budburst of Sitka spruce was not greatly changed, resulting in decreased synchrony between larval emergence and budburst. The general question of how a change of climate might affect phenological synchrony and insect abundance is discussed.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 120 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |