Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Referate und Beiträg...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Referate und Beiträge zur Anatomie und Entwickelungsgeschichte
Article . 1982 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Histogenesis of the inferior colliculus in rat

Authors: Vincent Meininger; Marina Repetto-Antoine;

Histogenesis of the inferior colliculus in rat

Abstract

The early histogenesis of the inferior colliculus from embryonic day 11 to 18 (E11 to E18) has been studied in the rat by analysis of Golgi impregnated material and plastic sections. This analysis has shown that the pseudo-stratified columnar neuroepithelium observed at E11 is followed by the appearance at E12 of three zones: marginal, intermediate and ventricular. Signs of cell differentiation are first observed in the intermediate zone. Secondary rearrangements occur within this zone, and by E16 a thin cortical plate (the cortex of the inferior colliculus) develops at the junction of the intermediate and marginal zones giving rise to the external and pericentral nuclei of this structure, which has a cortical organization in adults. The remainder of the intermediate zone (the nucleus of the inferior colliculus), invaded by axons, expands dramatically by E16–E17 and gives rise to the central and dorso-medial nuclei of the inferior colliculus which have a nuclear organization in adults. The morphogenetic events which take place in these two regions differ and can be identified by the study of cell migration and differentiation. In the nucleus of the inferior colliculus, neuronal migration begins with detachment of the ventricularly directed process, or trailing process, of the primitive epithelial cell from the ventricular surface. This is followed by the ascent of the cell nucleus through the pially directed, or leading, process by a mechanism identical to the perikaryal translocation already described in other regions of the nervous system. This mechanism of cell migration is characteristic of a first type of migratory young neuron (type I). Axons initiate from the leading process of these cells during migration and dendrites grow out in various directions giving these cells a bipolar or a multipolar appearance. Dendritic differentiation occurs first in the outermost cells of the nucleus and proceeds inwards. In the cortex of the inferior colliculus, neuronal migration also begins with detachment of the ventricular process, which occurs by E12, immediately followed by the detachment and retraction of the apical or leading process. Within the intermediate zone, migratory cells become rounded and sprout numerous processes. One of these processes is tipped by a growth cone and displays all the characteristics of an axon. It is directed tangentially in the intermediate layer. Dendritic growth and differentiation starts when the cells reach their final position in the cortical plate, and proceeds from the innermost cells outward. Due to the inadequacy of our methods for identifying radial glial fibers, the mechanism of migration of this type of cell (type II) remains unclear. Our results confirm that the inferior colliculus of the rat is organized as a central nuclear mass surrounded by a thin cortex. As previously observed in other regions of the nervous system, the modes of cell migration and differentiation in the cortical and non-cortical structures of the inferior colliculus appear different.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!