
doi: 10.1007/bf00296691
Oxygen reduction was studied on AISI 304 stainless steel in 0.51 m NaCl solution at pH values ranging from 4 to 10. A rotating disc electrode was employed. It was found that oxygen reduction is under mixed activation-diffusion control. The reaction order with respect to oxygen was found to be one. The values of the Tafel slope depend on the potential scan direction and pH of the solution, and range from – 115 to – 180 mV dec–1. The apparent number of electrons exchanged was calculated to be four, indicating the absence of H2O2 formation.
activation-diffusion control, rotating disc electrode, stainless steel; oxygen reduction; rotating disc electrode; activation-diffusion control, stainless steel, oxygen reduction
activation-diffusion control, rotating disc electrode, stainless steel; oxygen reduction; rotating disc electrode; activation-diffusion control, stainless steel, oxygen reduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 49 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
