Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Space Science Review...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Space Science Reviews
Article . 1989 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Recent progress in astrochemistry

Authors: B. E. Turner;

Recent progress in astrochemistry

Abstract

Models of the four currently recognized regimes of astrochemistry are compared with observations. Ion-Molecule Gas Phase Chemistry is fundamental throughout all interstellar and circumstellar molecular clouds, and by itself explains fairly well the simpler molecular species in diffuse and cold quiescent dense interstellar clouds, as well as in the outer envelopes of circumstellar clouds. Dust-Grain Chemistry may modify ion-molecule chemistry noticeably in regions containing UV radiation, shocks, or other heating agents which can serve to promote surface reactions and to desorb molecules frozen on grains; it likely plays no role in cold quiescent clouds except to adsorb gas phase molecules. Shock Chemistry occurs in regions of star formation and appears important in explaining certain molecular species and in disrupting grains. Circumstellar envelopes combine several chemistries, including those of thermochemical equilibrium in the dense inner regions, and ion-molecule in the outer regions, with grain processes also likely. The limitations of all current models are lack of knowledge of reaction rates, of detailed physical conditions (interstellar clouds), and of the relative depletions (onto grains) of the chemical elements, as well as grain surface chemistry in general. In both interstellar and circumstellar objects, ion-molecule gas phase models are now quite successful in explaining, semi-quantitatively, observed species with up to 4 atoms, but difficulties remain for larger species, as well as the state of carbon, and the models are not yet very predictive.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!