
Winds are directly detected from solar-type stars only when they are very young. At ages ~ 106 yr, these stars have mass loss rates ~ 106 times the mass flux of the present solar wind. Although these young T Tauri stars exhibit ultraviolet transition-region and X-ray coronal emission, the large particle densities of the massive winds lead to efficient radiative cooling, and wind temperatures are only ~ 104 K. In these circumstances thermal acceleration is unlikely to play an important role in driving the mass loss. Turbulent energy fluxes may be responsible for the observed mass loss, particularly if substantial magnetic fields are present.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
