
The properties of kinematic αω -dynamos are briefly reviewed. The mean field concept, including turbulent diffusivity, is defended against recent criticism. It is pointed out that although the Maunder minimum cannot be explained by kinematic dynamo theory alone, this does not invalidate dynamo theory in general. A special discussion is devoted to attempts to evaluate the coefficients of the mean field induction equation in the case of very large conductivity. The field then behaves intermittent, in the form of locally concentrated flux tubes, and the α-effect and the turbulent diffusivity may be determined by asymptotic techniques or with the help of an exact solution of the non-dissipative induction equation in Lagrangian co-ordinates.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 44 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
