Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Physicsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Physics
Article . 1988 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Relationship between high-energy physical phenomena on the sun and in astrophysics

Authors: Stirling A. Colgate;

Relationship between high-energy physical phenomena on the sun and in astrophysics

Abstract

High energy phenomena on the surface of the Sun are manifestations of part of the solar dynamo cycle. Convection and magnetic field give rise to unstable, twisted flux loops that become solar flares when the resistive tearing mode proceeds to the nonlinear limit. If such twisted flux loops did not dissipate rapidly due to an enhanced resistivity, then the dynamo would not work. The act of dissipation leads to intense heating and acceleration leading to X-rays and accelerated particles. The particles in turn give rise to hard X-rays, gamma rays, neutrons, and solar cosmic rays. In high-energy astrophysics such phenomena occur in accretion disks around compact objects like black holes in quasars and SS433. The resulting acceleration may explain the observed extremely high-energy cosmic rays of up to 1020 eV and the high-energy gamma rays of 1012 to 1015 eV. These high energies are more readily explained by acceleration E parallel to B as opposed to stochastic shock acceleration. The anisotropy and localization of gamma rays from solar flares potentially may indicate which mechanism is prevalent.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?