Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Geometriae Dedicataarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Geometriae Dedicata
Article . 1988 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 3 versions
addClaim

Cauchy-Riemann submanifolds of locally conformal Kaehler manifolds

Cauchy-Riemann submanifolds of locally conformal Kähler manifolds
Authors: DRAGOMIR, Sorin;

Cauchy-Riemann submanifolds of locally conformal Kaehler manifolds

Abstract

The concept of CR-submanifold [see the reviewer, Geometry of CR- submanifolds (1986; Zbl 0605.53001)] in a locally conformal Kähler manifold (l.c.K.) [see \textit{I. Vaisman}, Trans. Am. Math. Soc. 262, 533- 542 (1980; Zbl 0446.53048)] is considered by the author of the present paper. With respect to the differential geometry of a CR-submanifold M of a l.c.K. manifold \(\tilde M\) the author obtains the following results: 1. A characterization of CR-products provided \(\tilde M\) has negative holomorphic bisectional curvature [in the Kähler case the result is due to \textit{B. Y. Chen}, J. Differ. Geom. 16, 305-322 (1981; Zbl 0431.53048)]. 2. Any leaf of the totally real distribution is totally geodesic in M, provided M is mixed totally geodesic and the Lee field of \(\tilde M\) is normal to M. The other results are concerned with invariant, anti-invariant or arbitrary submanifolds of l.c.K. manifolds. Remark of the reviewer: The Theorem 1 which asserts that an invariant submanifold M is minimal if and only if the Lee field of M is tangent to M has been obtained before by \textit{K. Matsumoto} [Bull. Yamagata Univ., Nat. Sci. 11, 33-38 (1984; Zbl 0603.53029)].

Country
Italy
Related Organizations
Keywords

totally geodesic, Local differential geometry of Hermitian and Kählerian structures, CR-submanifold, CR-products, generic submanifolds, Global submanifolds, Lee field, f-structure, locally conformal Kähler manifold, Lee form, totally umbilical

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!