<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We shall outline some results regarding the infrared catastrophes of quantum electrodynamics and perturbative quantum gravity and their implications for information loss in quantum processes involving electrically or gravitationally charged particles. We will argue that two common approaches to the solution of the infrared problem, using transition probabilities which are inclusive of copious soft photon and graviton production and using dressed states describe fundamentally different quantizations of electrodynamics and low energy gravity which are, in principle, distinguishable by experiments.
Summary of a plenary talk given at "Lie Theory and Its Applications in Physics", Varna, Bulgaria, June 2019
High Energy Physics - Theory, High Energy Physics - Phenomenology, Quantum Physics, High Energy Physics - Phenomenology (hep-ph), High Energy Physics - Theory (hep-th), FOS: Physical sciences, Quantum Physics (quant-ph)
High Energy Physics - Theory, High Energy Physics - Phenomenology, Quantum Physics, High Energy Physics - Phenomenology (hep-ph), High Energy Physics - Theory (hep-th), FOS: Physical sciences, Quantum Physics (quant-ph)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |