<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We come to the watermelon field during the harvest season, and the ground is covered with many watermelons. The melon farmer brings a handful of melons and says that they are all ripe melons, and then points at a few melons in the ground and says that these are not ripe, and they would take a few more days to grow up. Based on this information, can we build a model to determine which melons in the field are ripe for picking? For sure, we can use the ripe and unripe watermelons told by the farmers as positive and negative samples to train a classifier. However, is it too few to use only a handful of melons as training samples? Can we use all the watermelons in the field as well?
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 38 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |