
This text is an introduction to equivariant cohomology, a classical tool for topological transformation groups, and to equivariant intersection theory, a much more recent topic initiated by D. Edidin and W. Graham. It is based on lectures given at Montr��al is Summer 1997. Our main aim is to obtain explicit descriptions of cohomology or Chow rings of certain manifolds with group actions which arise in representation theory, e.g. homogeneous spaces and their compactifications. As another appplication of equivariant intersection theory, we obtain simple versions of criteria for smoothness or rational smoothness of Schubert varieties (due to Kumar, Carrell-Peterson and Arabia) whose statements and proofs become quite transparent in this framework.
49 pages, 4 figures, latex2e, epsfig package required
Mathematics - Algebraic Geometry, FOS: Mathematics, Algebraic Geometry (math.AG)
Mathematics - Algebraic Geometry, FOS: Mathematics, Algebraic Geometry (math.AG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 40 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
