Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Highlights of Astron...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Highlights of Astronomy
Article . 1980 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
https://doi.org/10.1007/978-94...
Part of book or chapter of book . 1980 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Stellar Wind Theories

Authors: A. G. Hearn;

Stellar Wind Theories

Abstract

The term stellar wind is used nowadays to describe any more or less continuous mass loss from a star. With the observations made with satellites in recent years it is becoming clear that most stars are undergoing this form of mass loss, though its magnitude can be very different from one star to another. The term stellar wind does not include the more eruptive forms of mass loss such as novae, the ejection of mass in shells or mass loss as a result of flares.Stellar winds are maintained by energy and momentum deposited in the outer layers of a stellar atmosphere. The deposition of energy causes the heating of a chromosphere and corona, so that the theory of stellar winds cannot really be separated from the theory of coronal heating. Energy and momentum can both be deposited by the same mechanism. For example if a corona is heated by the dissipation of a wave which deposits energy, the same wave can change the momentum of the mean flow through wave pressure and this can happen even in the extreme case of no dissipation of the wave.The foundation of the theory of stellar winds was laid by Parker (1958) in his theory of the solar wind. A useful review of this work has been given by Parker (1965). The theory of the solar wind in its simplest form is deduced from the equation of motion combined with the equations of continuity and state.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
bronze