Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-94...
Part of book or chapter of book . 1996 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

Molecular Gas in High Redshift Galaxies

Authors: Simon J. E. Radford;

Molecular Gas in High Redshift Galaxies

Abstract

Study of molecular gas in distant galaxies during the last twenty years has followed the steady progress in mm wave receiver sensitivity. In 1975, CO was detected in M 82, NGC 253, and several other galaxies with redshifts of a few hundred km s-1 (Rickard et al. 1975; Solomon & de Zafra 1975). Over the next fifteen years, the CO detection horizon increased steadily, reaching z ≈ 0.22 by 1990 (Downes et al. 1991). The discovery that the large population of infrared luminous galaxies detected by IRAS are very gas rich (e.g., Sanders, Scoville, & Soifer 1991) was especially significant. In the last few years, there has been a breakthrough; CO has been observed in two high redshift objects, IRAS FSC 10214+4724 at z = 2.3 (Brown & Vanden Bout 1992b) and the Cloverleaf quasar (H 1413+117) at z = 2.6 (Barvainis et al. 1994; Barvainis 1996). These objects offer glimpses of galaxies’ properties when the Universe was only about 15% of its present age. The presence and conditions of molecular gas in galaxies at such an early epoch are clues to understanding galaxy formation and evolution in the early Universe. Despite much observational effort, however, no other high redshift sources have confirmed detections of CO. Indeed molecular gas in both 10214+4724 and the Cloverleaf is visible only because they are gravitationally lensed. In intrinsic molecular content, gas distribution, and IR luminosity, these galaxies resemble gas rich, ultraluminous IR galaxies in the local universe.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!