Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-94...
Part of book or chapter of book . 2013 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Arginase in Leishmania

Authors: Maria Fernanda Laranjeira, da Silva; Lucile Maria, Floeter-Winter;

Arginase in Leishmania

Abstract

The presence of different sets of several enzymes that participate in the Krebs-Henseleit cycle has been used to identify several genera of trypanosomatids. One of these enzymes is arginase (L-arginine amidinohydrolase, E.C. 3.5.3.1), a metalloenzyme that catalyzes the hydrolysis of L-arginine to L-ornithine and urea. Arginase activity has been detected in Leishmania, Crithidia and Leptomonas but not in Trypanosoma, Herpetomonas or Phytomonas. The ureotelic behavior of some trypanosomatids is not due to urea excretion but to the production of ornithine to supply the polyamine pathway, which is essential for replication. Leishmania is found inside macrophages in the mammalian host and to live in these cells, the parasite must escape from several microbicidal mechanisms, such as nitric oxide (NO) production mediated by inducible nitric oxide synthase (iNOS). Since arginase and iNOS use the L-arginine as substrate, the amount of this amino acid available for both pathways is critical for parasite replication. In both promastigotes and amastigotes, arginase is located in the glycosome indicating that arginine trafficking in the cell is used to provide the optimal concentration of substrate for arginase. Arginine uptake by the parasite is also important in supplying the arginase substrate. Leishmania responds to arginine starvation by increasing the amino acid uptake. In addition to the external supply, the internal L-arginine pool also governs the uptake of this amino acid, and the size of this internal pool is modulated by arginase activity. Thus, arginine uptake and arginase activity are important in establishing and maintaining Leishmania infection.

Keywords

Leishmania, Arginase, Sequence Homology, Amino Acid, Molecular Sequence Data, Animals, Nitric Oxide Synthase Type II, Amino Acid Sequence

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!