
A forest is a vast area of land covered predominantly with trees and undergrowth. In this paper, adhering to cartographic variables, we try to predict the predominant kind of tree cover of a forest using the Random Forests (RF) classification method. The study classifies the data into seven classes of forests found in the Roosevelt National Forest of Northern Colorado. With sufficient data to create a classification model, the RF classifier gives reasonably accurate results. Fine-tuning of the algorithm parameters was done to get promising results. Besides that a dimensionality check on the dataset was conducted to observe the possibilities of dimensionality reduction.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
