
This paper deals with knowledge extraction from reinforcement learners. It addresses two approaches towards knowledge extraction: the extraction of explicit, symbolic rules front neural reinforcement learners; and the extraction of complete plans from such learners. The advantages of such knowledge extraction include: the improvement of learning (especially with the rule extraction approach); and the improvement of the usability of results of learning.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
