
We study renormalization in a kinetic scheme using the Hopf algebraic framework, first summarizing and recovering known results in this setting. Then we give a direct combinatorial description of renormalized amplitudes in terms of Mellin transform coefficients, featuring the universal property of rooted trees H_R. In particular, a special class of automorphisms of H_R emerges from the action of changing Mellin transforms on the Hochschild cohomology of perturbation series. Furthermore, we show how the Hopf algebra of polynomials carries a refined renormalization group property, implying its coarser form on the level of correlation functions. Application to scalar quantum field theory reveals the scaling behaviour of individual Feynman graphs.
24 pages
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), Rings and Algebras (math.RA), FOS: Mathematics, FOS: Physical sciences, Mathematics - Rings and Algebras, Mathematical Physics (math-ph), Mathematical Physics
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), Rings and Algebras (math.RA), FOS: Mathematics, FOS: Physical sciences, Mathematics - Rings and Algebras, Mathematical Physics (math-ph), Mathematical Physics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
