Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Open Archive Toulous...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2017 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-INSA Toulouse
Part of book or chapter of book . 2017
Data sources: HAL-INSA Toulouse
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Université Grenoble Alpes: HAL
Part of book or chapter of book . 2017
versions View all 4 versions
addClaim

Carbon Nanotubes

Authors: Monthioux, Marc; Serp, Philippe; Caussat, Brigitte; Flahaut, Emmanuel; Razafinimanana, Manitra; Valensi, Flavien; Laurent, Christophe; +5 Authors

Carbon Nanotubes

Abstract

Carbon nanotubes (CNTs) are remarkable objects that once looked set to revolutionize the technological landscape in the near future. Since the 1990s and for twenty years thereafter, it was repeatedly claimed that tomorrow’s society would be shaped by nanotube applications, just as silicon-based technologies dominate society today. Space elevators tethered by the strongest of cables, hydrogen-powered vehicles, artificial muscles: these were just a few of the technological marvels that we were told would be made possible by the science of carbon nanotubes. Of course, this prediction is still some way from becoming reality; most often the possibilities and potential have been evaluated, but actual technological development is facing the unforgiving rule that drives the transfer of a new material or a new device to market: profitability. New materials, even more so for nanomaterials, no matter how wonderful they are, have to be cheap to produce, constant in quality, easy to handle, and nontoxic. Those are the conditions for an industry to accept a change in its production lines to make them nanocompatible. Consider the example of fullerenes – molecules closely related to nanotubes. The anticipation that surrounded these molecules, first reported in 1985, resulted in the bestowment of a Nobel Prize for their discovery in 1996. However, two decades later, very few fullerene applications have reached the market, suggesting that similarly enthusiastic predictions about nanotubes should be approached with caution, and so should it be with graphene, another member of the carbon nanoform family which joined the game in 2004, again acknowledged by a Nobel Prize in 2010. There is no denying, however, that the expectations surrounding carbon nanotubes are still high, because of specificities that make them special compared to fullerenes and graphene: their easiness of production, their dual molecule/nano-object nature, their unique aspect ratio, their robustness, the ability of their electronic structure to be given a gap, and their wide typology etc. Therefore, carbon nanotubes may provide the building blocks for further technological progress, enhancing our standard of living. In this chapter, we first describe the structures, syntheses, growth mechanisms, and properties of carbon nanotubes. Then we introduce nanotube-based materials, which comprise on the one hand those formed by reactions and associations of all carbon nanotubes with foreign atoms, molecules and compounds, and on the other hand, composites, obtained by incorporating carbon nanotubes in various matrices. Finally, we will provide a list of applications currently on the market, while skipping the potentially endless and speculative list of possible applications.

Country
France
Keywords

Matériaux, Properties, Carbon nanotubes, 500, Synthesis and characterizations, Structure, Application domain, Growth, Review, 541, [PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci], Synthesis, Applications, [PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci], Génie chimique, Carbon 0, Génie des procédés

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 18
    download downloads 1
  • 18
    views
    1
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
15
Top 10%
Average
Average
18
1
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!