Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://arxiv.org/pdf...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://arxiv.org/pdf/1404.7810...
Part of book or chapter of book
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2014 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2014
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Parameterized Complexity of Bandwidth on Trees

Authors: Markus Sortland Dregi; Daniel Lokshtanov;

Parameterized Complexity of Bandwidth on Trees

Abstract

The bandwidth of a $n$-vertex graph $G$ is the smallest integer $b$ such that there exists a bijective function $f : V(G) \rightarrow \{1,...,n\}$, called a layout of $G$, such that for every edge $uv \in E(G)$, $|f(u) - f(v)| \leq b$. In the {\sc Bandwidth} problem we are given as input a graph $G$ and integer $b$, and asked whether the bandwidth of $G$ is at most $b$. We present two results concerning the parameterized complexity of the {\sc Bandwidth} problem on trees. First we show that an algorithm for {\sc Bandwidth} with running time $f(b)n^{o(b)}$ would violate the Exponential Time Hypothesis, even if the input graphs are restricted to be trees of pathwidth at most two. Our lower bound shows that the classical $2^{O(b)}n^{b+1}$ time algorithm by Saxe [SIAM Journal on Algebraic and Discrete Methods, 1980] is essentially optimal. Our second result is a polynomial time algorithm that given a tree $T$ and integer $b$, either correctly concludes that the bandwidth of $T$ is more than $b$ or finds a layout of $T$ of bandwidth at most $b^{O(b)}$. This is the first parameterized approximation algorithm for the bandwidth of trees.

33 pages, To appear at ICALP 2014

Keywords

FOS: Computer and information sciences, Computer Science - Computational Complexity, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), Computational Complexity (cs.CC)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Average
Green