
A well studied family of random fractals called fractal percolation is discussed. We focus on the projections of fractal percolation on the plane. Our goal is to present stronger versions of the classical Marstrand theorem, valid for almost every realization of fractal percolation. The extensions go in three directions: {itemize} the statements work for all directions, not almost all, the statements are true for more general projections, for example radial projections onto a circle, in the case $\dim_H >1$, each projection has not only positive Lebesgue measure but also has nonempty interior. {itemize}
Survey submitted for AFRT2012 conference
Probability (math.PR), FOS: Mathematics, Dynamical Systems (math.DS), Mathematics - Dynamical Systems, Mathematics - Probability
Probability (math.PR), FOS: Mathematics, Dynamical Systems (math.DS), Mathematics - Dynamical Systems, Mathematics - Probability
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
