Powered by OpenAIRE graph
Found an issue? Give us feedback
https://doi.org/10.1...arrow_drop_down
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2002 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 1999 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 1996 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Finite Difference Methods

Authors: Milovan Perić; Joel H. Ferziger;

Finite Difference Methods

Abstract

As was mentioned in Chap. 1, all conservation equations have similar structure and may be regarded as special cases of a generic transport equation, Eq. (1.26), (1.27) or (1.28). For this reason, we shall treat only a single, generic conservation equation in this and the following chapters. It will be used to demonstrate discretization methods for the terms which are common to all conservation equations (convection, diffusion, and sources). The special features of the Navier-Stokes equations, and techniques for solving coupled non-linear problems will be introduced later. Also, for the time being, the unsteady term will be dropped so we shall consider only time-independent problems.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!