
handle: 11104/0228284
Herbrand and Skolemization theorems are obtained for a broad family of first-order substructural logics. These logics typically lack equivalent prenex forms, a deduction theorem, and reductions of semantic consequence to satisfiability. The Herbrand and Skolemization theorems therefore take various forms, applying either to the left or right of the consequence relation, and to restricted classes of formulas.
substructural logics, predicate logics, Skolemization, residuated lattices, Herbrand theorem
substructural logics, predicate logics, Skolemization, residuated lattices, Herbrand theorem
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
