
Although an increasing number of RDF knowledge bases are published, many of those consist primarily of instance data and lack sophisticated schemata. Having such schemata allows more powerful querying, consistency checking and debugging as well as improved inference. One of the reasons why schemata are still rare is the effort required to create them. In this article, we propose a semi-automatic schemata construction approach addressing this problem: First, the frequency of axiom patterns in existing knowledge bases is discovered. Afterwards, those patterns are converted to SPARQL based pattern detection algorithms, which allow to enrich knowledge base schemata. We argue that we present the first scalable knowledge base enrichment approach based on real schema usage patterns. The approach is evaluated on a large set of knowledge bases with a quantitative and qualitative result analysis.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 19 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
