
Programmed cell death (apoptosis) is a coordinated set of events eventually leading to the massive activation of specialized proteases (caspases) that cleave numerous substrates, orchestrating fairly uniform biochemical changes than culminate in cellular suicide. Apoptosis can be triggered by a variety of stimuli, from external signals or growth factor withdrawal to intracellular conditions, such as DNA damage or ER stress. Arrestins regulate many signaling cascades involved in life-or-death decisions in the cell, so it is hardly surprising that numerous reports document the effects of ubiquitous nonvisual arrestins on apoptosis under various conditions. Although these findings hardly constitute a coherent picture, with the same arrestin subtypes, sometimes via the same signaling pathways, reported to promote or inhibit cell death, this might reflect real differences in pro- and antiapoptotic signaling in different cells under a variety of conditions. Recent finding suggests that one of the nonvisual subtypes, arrestin-2, is specifically cleaved by caspases. Generated fragment actively participates in the core mechanism of apoptosis: it assists another product of caspase activity, tBID, in releasing cytochrome C from mitochondria. This is the point of no return in committing vertebrate cells to death, and the aspartate where caspases cleave arrestin-2 is evolutionary conserved in vertebrate, but not in invertebrate arrestins. In contrast to wild-type arrestin-2, its caspase-resistant mutant does not facilitate cell death.
Arrestins, MAP Kinase Signaling System, Apoptosis, Endoplasmic Reticulum Stress, Caspases, Animals, Humans, Tumor Suppressor Protein p53, beta-Arrestins, DNA Damage, Signal Transduction
Arrestins, MAP Kinase Signaling System, Apoptosis, Endoplasmic Reticulum Stress, Caspases, Animals, Humans, Tumor Suppressor Protein p53, beta-Arrestins, DNA Damage, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
