Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2013 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Eukaryotic Replicative DNA Polymerases

Authors: Erin Walsh; Kristin A. Eckert;

Eukaryotic Replicative DNA Polymerases

Abstract

DNA replication is a dynamic process that requires the precise coordination of numerous cellular proteins. At the core of replication in eukaryotic cells are three DNA polymerases, Pol α, Pol δ, and Pol e, which function cooperatively to ensure efficient and high-fidelity genome replication. These enzymes are members of the B family of DNA polymerases, characterized by conserved amino acid motifs within the polymerase active sites. Pol α is a DNA polymerase of moderate fidelity that lacks 3′→5′ exonuclease activity, while Pols δ and e are processive, high-fidelity polymerases with functional 3′→5′ exonuclease activities. Each polymerase exists as a holoenzyme complex of a large polymerase catalytic subunit and several smaller subunits. The Pol α holoenzyme possesses primase activity, which is required for de novo synthesis of RNA–DNA primers at replication origins and at each new Okazaki fragment. In one model of eukaryotic DNA replication, Pol e functions in leading strand DNA synthesis, while Pol δ functions primarily in lagging strand synthesis. This chapter discusses the biochemical properties of eukaryotic replicative polymerases and how biochemical properties shape their functional roles in replication initiation, replication fork elongation, and the checkpoint responses.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!