
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Keyword search is the most popular way to access information. In this paper we introduce a novel approach for determining the correct resources for user-supplied queries based on a hidden Markov model. In our approach the user-supplied query is modeled as the observed data and the background knowledge is used for parameter estimation. We leverage the semantic relationships between resources for computing the parameter estimations. In this approach, query segmentation and resource disambiguation are mutually tightly interwoven. First, an initial set of potential segments is obtained leveraging the underlying knowledge base; then, the final correct set of segments is determined after the most likely resource mapping was computed. While linguistic analysis (e.g. named entity, multi-word unit recognition and POS-tagging) fail in the case of keyword-based queries, we will show that our statistical approach is robust with regard to query expression variance. Our experimental results reveal very promising results.
Computer Sciences, Graphics and Human Computer Interfaces, Other Computer Sciences
Computer Sciences, Graphics and Human Computer Interfaces, Other Computer Sciences
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
