<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Most database researchers have studied data warehouses (DW) in their role as buffers of materialized views, mediating between updateintensive OLTP systems and query-intensive decision support. This neglects the organizational role of data warehousing as a means of centralized information flow control. As a consequence, a large number of quality aspects relevant for data warehousing cannot be expressed with the current DW meta models. This paper makes two contributions towards solving these problems. Firstly, we enrich the meta data about DW architectures by explicit enterprise models. Secondly, many very different mathematical techniques for measuring or optimizing certain aspects of DW quality are being developed. We adapt the Goal-Question-Metric approach from software quality management to a meta data management environment in order to link these special techniques to a generic conceptual framework of DW quality. Initial feedback from ongoing experiments with a partial implementation of the resulting meta data structure in three industrial case studies provides a partial validation of the approach.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 24 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |