<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Syllabi are rich educational resources. However, finding Computer Science syllabi on a generic search engine does not work well. Towards our goal of building a syllabus collection we have trained various Decision Tree, Naive-Bayes, Support Vector Machine and Feed-Forward Neural Network classifiers to recognize Computer Science syllabi from other web pages. We have also trained our classifiers to distinguish between Artificial Intelligence and Software Engineering syllabi. Our best classifiers are 95% accurate at both the tasks. We present an analysis of the various feature selection methods and classifiers we used hoping to help others developing their own collections.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |