
In the present article, we show that the multilevel Monte Carlo method for elliptic stochastic partial differential equations can be interpreted as a sparse grid approximation. By using this interpretation, the method can straightforwardly be generalized to any given quadrature rule for high dimensional integrals like the quasi Monte Carlo method or the polynomial chaos approach. Besides the multilevel quadrature for approximating the solution's expectation, a simple and efficient modification of the approach is proposed to compute the stochastic solution's variance. Numerical results are provided to demonstrate and quantify the approach.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
