
pmid: 21995024
Fiber clustering is a prerequisite step towards tract-based analysis of white mater integrity via diffusion tensor imaging (DTI) in various clinical neuroscience applications. Many methods reported in the literature used geometric or anatomic information for fiber clustering. This paper proposes a novel method that uses functional coherence as the criterion to guide the clustering of fibers derived from DTI tractography. Specifically, we represent the functional identity of a white matter fiber by two resting state fMRI (rsfMRI) time series extracted from the two gray matter voxels to which the fiber connects. Then, the functional coherence or similarity between two white matter fibers is defined as their rsfMRI time series' correlations, and the data-driven affinity propagation (AP) algorithm is used to cluster fibers into bundles. At current stage, we use the corpus callosum (CC) fibers that are the largest fiber bundle in the brain as an example. Experimental results show that the proposed fiber clustering method can achieve meaningful bundles that are reasonably consistent across different brains, and part of the clustered bundles was validated via the benchmark data provided by task-based fMRI data.
Brain Mapping, Models, Statistical, Brain, Magnetic Resonance Imaging, Corpus Callosum, Diffusion Magnetic Resonance Imaging, Diffusion Tensor Imaging, Nerve Fibers, Image Processing, Computer-Assisted, Cluster Analysis, Humans, Algorithms
Brain Mapping, Models, Statistical, Brain, Magnetic Resonance Imaging, Corpus Callosum, Diffusion Magnetic Resonance Imaging, Diffusion Tensor Imaging, Nerve Fibers, Image Processing, Computer-Assisted, Cluster Analysis, Humans, Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
