Views provided by UsageCounts
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>handle: 10773/5541 , 1822/15256
Modal logics are successfully used as specification logics for reactive systems. However, they are not expressive enough to refer to individual states and reason about the local behaviour of such systems. This limitation is overcome in hybrid logics which introduce special symbols for naming states in models. Actually, hybrid logics have recently regained interest, resulting in a number of new results and techniques as well as applications to software specification. In this context, the first contribution of this paper is an attempt to 'universalize' the hybridization idea. Following the lines of [15], where a method to modalize arbitrary institutions is presented, the paper introduces a method to hybridize logics at the same institution-independent level. The method extends arbitrary institutions with Kripke semantics (for multi-modalities with arbitrary arities) and hybrid features. This paves the ground for a general result: any encoding (expressed as comorphism) from an arbitrary institution to first order logic (FOL) determines a comorphism from its hybridization to FOL. This second contribution opens the possibility of effective tool support to specification languages based upon logics with hybrid features.
formal specification, Hybrid logic, Formal Specification, Specification logic, Modal logic, Institution theory, Software Specification, hybrid logic, Specification languages, Specifications
formal specification, Hybrid logic, Formal Specification, Specification logic, Modal logic, Institution theory, Software Specification, hybrid logic, Specification languages, Specifications
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 45 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 1 |

Views provided by UsageCounts