
The {\em Total Influence} ({\em Average Sensitivity) of a discrete function is one of its fundamental measures. We study the problem of approximating the total influence of a monotone Boolean function \ifnum\plusminus=1 $f: \{\pm1\}^n \longrightarrow \{\pm1\}$, \else $f: \bitset^n \to \bitset$, \fi which we denote by $I[f]$. We present a randomized algorithm that approximates the influence of such functions to within a multiplicative factor of $(1\pm \eps)$ by performing $O(\frac{\sqrt{n}\log n}{I[f]} \poly(1/\eps)) $ queries. % \mnote{D: say something about technique?} We also prove a lower bound of % $��(\frac{\sqrt{n/\log n}}{I[f]})$ $��(\frac{\sqrt{n}}{\log n \cdot I[f]})$ on the query complexity of any constant-factor approximation algorithm for this problem (which holds for $I[f] = ��(1)$), % and $I[f] = O(\sqrt{n}/\log n)$), hence showing that our algorithm is almost optimal in terms of its dependence on $n$. For general functions we give a lower bound of $��(\frac{n}{I[f]})$, which matches the complexity of a simple sampling algorithm.
FOS: Computer and information sciences, Discrete Mathematics (cs.DM), Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), Computer Science - Discrete Mathematics
FOS: Computer and information sciences, Discrete Mathematics (cs.DM), Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), Computer Science - Discrete Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
