
In this paper, we analyze the hash functions Dynamic SHA and Dynamic SHA2, which have been selected as first round candidates in the NIST hash function competition. These hash functions rely heavily on data-dependent rotations, similar to certain block ciphers, e.g., RC5. Our analysis suggests that in the case of hash functions, where the attacker has more control over the rotations, this approach is less favorable than in block ciphers. We present practical, or close to practical, collision attacks on both Dynamic SHA and Dynamic SHA2. Moreover, we present a preimage attack on Dynamic SHA that is faster than exhaustive search.
Technology, Science & Technology, PREIMAGES, cosic, SHA-3 candidate, Dynamic SHA2, MD5, Computer Science, Theory & Methods, HASH FUNCTIONS, Computer Science, hash function, collision attack, Dynamic SHA
Technology, Science & Technology, PREIMAGES, cosic, SHA-3 candidate, Dynamic SHA2, MD5, Computer Science, Theory & Methods, HASH FUNCTIONS, Computer Science, hash function, collision attack, Dynamic SHA
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
