
The QA campaign at CLEF 2008 [1], was mainly the same as that proposed last year. The results and the analyses reported by last year's participants suggested that the changes introduced in the previous campaign had led to a drop in systems' performance. So for this year's competition it has been decided to practically replicate last year's exercise. Following last year's experience some QA pairs were grouped in clusters. Every cluster was characterized by a topic (not given to participants). The questions from a cluster contained coreferences between one of them and the others. Moreover, as last year, the systems were given the possibility to search for answers in Wikipedia as document corpus beside the usual newswire collection. In addition to the main task, three additional exercises were offered, namely the Answer Validation Exercise (AVE), the Question Answering on Speech Transcriptions (QAST), which continued last year's successful pilots, together with the new Word Sense Disambiguation for Question Answering (QA-WSD). As general remark, it must be said that the main task still proved to be very challenging for participating systems. As a kind of shallow comparison with last year's results the best overall accuracy dropped significantly from 42% to 19% in the multi-lingual subtasks, but increased a little in the monolingual sub-tasks, going from 54% to 63%.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 26 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
