
An algorithm that bootstraps the acquisition of large dictionaries of entity types (names) and pattern types from a few seeds and a large unannotated corpora is presented. The algorithm iteratively builds a bigraph of entities and collocated patterns by querying the text. Several classes simultaneously compete to label the entity types. Different experiments have been carried to acquire resources from a 1GB corpus of Spanish news. The usefulness of the acquired list of entity types for the task of Name Classification has also been evaluated with good results for a weakly supervised method.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
