Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2009 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 1992 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Basic Philosophy of CFD

Authors: John D. Anderson;

Basic Philosophy of CFD

Abstract

Imagine that you are an aeronautical engineer in the later 1950s. You have been given the task of designing an atmospheric entry vehicle—in those days it would have been an intercontinental ballistic missile. (Later, in the early 1960s, interest also focused on manned atmospheric entry vehicles for orbital and lunar return missions.) You are well aware of the fact that such vehicles will enter the earth’s atmosphere at very high velocities, about 7.9 km/s for entry from earth orbit and about 11.2 km/s for entry after returning from a lunar mission. At these extreme hypersonic speeds, aerodynamic heating of the entry vehicle becomes very severe, and is the dominant concern in the design of such vehicles. Moreover, you are cognizant of the recent work performed at the NACA Ames Aeronautical Laboratory by H. Julian Allen and colleagues wherein a blunt-nosed hypersonic body was shown to experience considerably less aerodynamic heating than a sharp, slender body—contrary to some popular intuition at that time. (This work was finally unclassified and released to the general public in 1958 in NACA Report 1381 entitled A Study of the Motion and Aerodynamic Heating of Ballistic Missiles Entering the Earth’s Atmosphere at High Supersonic Speeds.) Therefore, you know that your task involves the design of a blunt body for hypersonic speed. Moreover, you know from supersonic wind tunnel experiments that the flowfield over the blunt body is qualitatively like that sketched in Figure 1.1. You know that a strong curved bow shock wave sits in front of the blunt nose, detached from the nose by the distance δ, called the shock detatchment distance.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Top 1%
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?