
As logic programming applications grow in size, Prolog systems need to efficiently access larger and larger data sets and the need for any- and multiargument indexing becomes more and more profound. Static generation of multiargument indexing is one alternative, but applications often rely on features that are inherently dynamic which makes static techniques inapplicable or inaccurate. Another alternative is to employ dynamic schemes for flexible demand-driven indexing of Prolog clauses. We propose such schemes and discuss issues that need to be addressed for their efficient implementation in the context of WAM-based Prolog systems.We have implemented demand-driven indexing in two different Prolog systems and have been able to obtain non-negligible performance speedups: from a few percent up to orders of magnitude. Given these results, we see very little reason for Prolog systems not to incorporate some form of dynamic indexing based on actual demand. In fact, we see demand-driven indexing as only the first step towards effective runtime optimization of Prolog programs.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
