
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>This paper proposes a robust method for word sense disambiguation (WSD) of Japanese. Four classifiers were combined in order to improve recall and applicability: one used example sentences in a machine readable dictionary (MRD), one used grammatical information in an MRD, and two classifiers were obtained by supervised learning from a sense-tagged corpus. In other words, we combined several classifiers using heterogeneous language resources, an MRD and a word sense tagged corpus. According to our experimental results, the proposed method outperformed the best single classifier for recall and applicability.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
