<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Swarm Robotics are widely conceived as the development of new computationally efficient tools and techniques aimed at easing and enhancing the coordination of multiple robots towards collaboratively accomplishing a certain mission or task. Among the different criteria under which the performance of Swarm Robotics can be gauged, energy efficiency and battery lifetime have played a major role in the literature. However, technological advances favoring power transfer among robots have unleashed new paradigms related to the optimization of the battery consumption considering it as a resource shared by the entire swarm. This work focuses on this context by elaborating on a routing problem for collaborative exploration in Swarm Robotics, where a subset of robots is equipped with battery recharging functionalities. Formulated as a bi-objective optimization problem, the quality of routes is measured in terms of the Pareto trade-off between the predicted area explored by robots and the risk of battery outage in the swarm. To efficiently balance these conflicting two objectives, a bio-inspired evolutionary solver is adopted and put to practice over a realistic experimental setup implemented in the VREP simulation framework. Obtained results elucidate the practicability of the proposed scheme, and suggest future research leveraging power transfer capabilities over the swarm.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |