
A graph $G$ is called a sum graph if there is a so-called sum labeling of $G$, i.e. an injective function $\ell: V(G) \rightarrow \mathbb{N}$ such that for every $u,v\in V(G)$ it holds that $uv\in E(G)$ if and only if there exists a vertex $w\in V(G)$ such that $\ell(u)+\ell(v) = \ell(w)$. We say that sum labeling $\ell$ is minimal if there is a vertex $u\in V(G)$ such that $\ell(u)=1$. In this paper, we show that if we relax the conditions (either allow non-injective labelings or consider graphs with loops) then there are sum graphs without a minimal labeling, which partially answers the question posed by Miller, Ryan and Smyth in 1998.
IWOCA 2017
FOS: Computer and information sciences, Discrete Mathematics (cs.DM), FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), Computer Science - Discrete Mathematics
FOS: Computer and information sciences, Discrete Mathematics (cs.DM), FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), Computer Science - Discrete Mathematics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
