Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2017 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Wind Power Production Forecasting Using Ant Colony Optimization and Extreme Learning Machines

Authors: Cristina Perfecto; Miren Nekane Bilbao; Maria Carrillo; Javier Del Ser; Javier Del Ser; David Camacho;

Wind Power Production Forecasting Using Ant Colony Optimization and Extreme Learning Machines

Abstract

Nowadays the energy generation strategy of almost every nation around the world relies on a strong contribution from renewable energy sources. In certain countries the relevance taken by wind energy is particularly high within its national production share, mainly due to its large-scale wind flow patterns. This noted potentiality of wind energy has so far attracted public and private funds to support the development of advanced wind energy technologies. However, the proliferation of wind farms makes it challenging to achieve a proper electricity balance of the grid, a problem that becomes further involved due to the fluctuations of wind generation that occur at different time scales. Therefore, acquiring a predictive insight on the variability of this renewable energy source becomes essential in order to optimally inject the produced wind energy into the electricity grid. To this end the present work elaborates on a hybrid predictive model for wind power production forecasting based on meteorological data collected at different locations over the area where a wind farm is located. The proposed method hybridizes Extreme Learning Machines with a feature selection wrapper that models the discovery of the optimum subset of predictors as a metric-based search for the optimum path through a solution graph efficiently tackled via Ant Colony Optimization. Results obtained by our approach for two real wind farms in Zamora and Galicia (Spain) are presented and discussed, from which we conclude that the proposed hybrid model is able to efficiently reduce the number of input features and enhance the overall model performance.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?