
The point kinetics model can be obtained directly from the space- and time-dependent transport equations. However, these equations are too complicated to be of any practical application. The diffusion approximation, obtained by keeping only the PI terms of the spherical harmonics expansion in the angular variable of the directional flux, is frequently used in neutronic analysis. This chapter discusses reactor characteristics that change because of changing reactivity. A basic approach using a minimum of mathematics has been followed. Emphasis has been placed on distinguishing between prompt and delayed neutrons and showing relationships among reactor variables, keff, period, neutron density, and power level.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
