
In this paper we show how the research domain of enumerative combinatorics can benefit from testing and formal verification. We formalize in Coq the combinatorial structures of permutations and maps, and a couple of related operations. Before formally proving soundness theorems about these operations, we first validate them, by using logic programming (Prolog) for bounded exhaustive testing and Coq/QuickChick for random testing. It is an experimental study preparing a more ambitious project about formalization of combinatorial results assisted by verification tools.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
