
The standard hot big bang model predicts that today the universe has a temperature of a few Kelvin [1]. In 1964, a background signal was discovered and found consistent with a black-body spectrum at the temperature of about 3 K [2], which was soon recognized as radiation from the primordial universe [3]. Later observations confirmed the black-body spectrum and defined the main characteristics of this radiation, such as the presence of tiny anisotropies in an otherwise extremely isotropic background (Fig. 4.1).
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
