
Gaussian random processes play an important role both in theoretical probability and in various applied models. We start by recalling basic facts about Gaussian random variables and Gaussian vectors. We then discuss Gaussian spaces and Gaussian processes, and we establish the fundamental properties concerning independence and conditioning in the Gaussian setting. We finally introduce the notion of a Gaussian white noise, which is used to give a simple construction of Brownian motion in the next chapter.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
