Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2015 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy-Efficient Optical Signal Processing Using Optical Time Lenses

Authors: Oxenløwe, Leif Katsuo; Galili, Michael; Mulvad, Hans Christian Hansen; Hu, Hao; Guan, Pengyu; Palushani, Evarist; Lillieholm, Mads; +1 Authors

Energy-Efficient Optical Signal Processing Using Optical Time Lenses

Abstract

This chapter describes advanced functionalities for optical signal processing using optical time lenses. A special focus is devoted to functionalities that allow for energy-savings. In particular, we find that optical signal processing, where the processing is broadband and capable of handling many bits in a single operation allows for sharing the processing energy by the many bits, and hence the energy per bit is reduced. Such functionalities include serial-to-parallel conversion in a single time lens, where a large number of parallel demultiplexers may be substituted by a single time lens. Combining time lenses into telescopic arrangements allows for more advanced signal processing, such as temporal or spectral compression or magnification. A spectral telescope may for instance allow for conversion of OFDM signals to DWDM-like signals, which can be separated passively, i.e. without additional energy. This is opposed to the DFT OFDM receivers otherwise suggested, where a temporal active gate is required for each tributary. With the spectral telescope, only two active time lenses are required, irrespective of how many tributaries are used. This chapter describes how optical time lenses function and by showing examples of some advanced functionalities points to future scenarios where energy consumption may be considerably reduced.

Country
United Kingdom
Related Organizations
Keywords

520, 620

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!