
handle: 1854/LU-4661326
Since Jeff Paris introduced them in the late seventies [Par78], densities turned out to be useful for studying independence results. Motivated by their simplicity and surprising strength we investigate the combinatorial complexity of two such densities which are strongly related to the pigeonhole principle. The aim is to miniaturise Ramsey’s Theorem for 1-tuples. The first principle uses an unlimited amount of colours, whereas the second has a fixed number of two colours. We show that these principles give rise to Ackermannian growth. After parameterising these statements with respect to a function f : ℕ → ℕ, we investigate for which functions f Ackermannian growth is still preserved.
pigeonhole principle, Mathematics and Statistics, Ramsey theory, Ackermann function, phase transitions
pigeonhole principle, Mathematics and Statistics, Ramsey theory, Ackermann function, phase transitions
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
